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Abstract: We investigated a machine-learning-based fast banknote serial number recognition method.
Unlike existing methods, the proposed method not only recognizes multi-digit serial numbers
simultaneously but also detects the region of interest for the serial number automatically from
the input image. Furthermore, the proposed method uses knowledge distillation to compress
a cumbersome deep-learning model into a simple model to achieve faster computation. To automatically
decide hyperparameters for knowledge distillation, we applied the Bayesian optimization method.
In experiments using Japanese Yen, Korean Won, and Euro banknotes, the proposed method showed
significant improvement in computation time while maintaining a performance comparable to a
sequential region of interest (ROI) detection and classification method.
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1. Introduction

Correct recognition of banknote serial numbers is important because it can be used to trace
the circulation routes of individual banknotes to provide essential information about economic
activities [1,2]. For this reason, many investigations of serial number recognition have been
conducted [2-7]. The serial number recognition problem essentially belongs to the printed character
recognition problem which has been studied in other fields such as license plate recognition [8] and
address recognition [9]. Unlike these other fields, serial number recognition for banknotes requires
extremely high accuracy since even a small error can result in a huge financial loss [2]. In addition,
real-time recognition must meet the required transaction times for teller machines. Consequently,
banknote serial number recognition requires the design of a fast serial number recognition system with
very high accuracy, a challenging task.

Typical serial number recognition systems execute a pre-processing step and a character
recognition step [1]. The first step includes detection of the region of interest (ROI) that contains
the serial number in the acquired banknote image as well as enhancement of the acquired image [1].
ROI detection is challenging for various reasons including uneven illumination, smears, and patterns
present in the background [2]. To resolve these problems, several methods have been investigated
using image processing techniques [10]. After extracting a region for the serial number, segmentation
of the serial number is implemented to classify each digit individually [2]. To the best of our
knowledge, all reported methods execute single digit classification after segmentation of each
digit [2,4,11]. However, it has been reported that individual character classification usually requires
longer computation times than simultaneous classification of all digits [12].
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The second step is character recognition in which the segmented characters are identified [2].
Many methods for character recognition have been investigated [2,13-18]. One may divide this step
into the two sub-steps of feature extraction and classification as was done in a previous investigation [2].
The feature extraction step attempts to extract the most useful features of a single digit’s image in order
to improve character classification. These may include a histogram of oriented gradients (HOG),
intensity values, or Gabor features [2,6,13,14]. The classification step classifies the image of each digit
using the features extracted in the previous step [2]. Several different classification methods have been
investigated including support vector machines (SVM), convolutional neural networks (CNN), hybrid
CNN-SVM, and the modified quadratic discriminant function (MQDF) [2,4,6,17,18]. Although many
methods have been proposed and studied, we believe that existing methods need to be improved
in terms of performance and learning capability. It is desirable for a serial number recognition method
to be able to learn how to correctly recognize a previously unrecognizable banknote. We propose
that a machine learning-based method is one of the best candidates to accomplish that since it can be
retrained whenever an unrecognized number occurs; it does not require the redesign of complicated
character segmentation and classification methods. Recently, many deep-learning-based methods have
been successfully applied to banknote recognition [19-21].

To meet the requirements discussed above, we propose a fast high-performance banknote serial
number recognition system based on deep-learning technology. In this paper, we assume that the input
image of the system is not rotated since it can be automatically aligned in an image acquisition system.
If the input image is significantly distorted, it is difficult to detect ROI and to classify it correctly.
In this event, we can consider rotation-invariant methods [22,23]. Unlike conventional methods,
the proposed method processes every recognition step using machine learning-based methods. In other
words, we not only classify characters in an extracted serial number region but also determine
the serial number region using a machine learning-based method. Moreover, we recognize the
entire serial number at once to achieve a faster computation time. Please note that the evaluation
of one shallow network can be much faster than sequential evaluation as reported in a previous
investigation [12]. In addition, we attempt to further reduce computation time through concurrent
detection of ROI and classification of characters, unlike existing methods that sequentially process ROI
detection and character classification. Furthermore, we attempt to make the recognition even faster
by compressing the joint model using knowledge distillation [12,24], one of the most promising of
the model compression methods that attempt to reduce complicated machine learning systems into
simple systems [25]. Because there are many hyperparameters in knowledge distillation-based model
compression, their determination is cumbersome. To overcome this problem, we apply a Bayesian
optimization method to automatically determine hyperparameters. The Bayesian optimization method
is useful in optimizing parameters for a system that is non-differentiable and computationally heavy
to evaluate [26-28]. In addition, the Bayesian optimization method showed better performance than
genetic algorithms in [29] and required less computation than the genetic algorithms as the complexity
of the problem increased [29]. Previous studies have applied Bayesian optimization in various areas
to determine hyperparameters [30-32]. We verify the performance of the proposed method through
experiments using Japanese Yen, Korean Won, and Euro banknotes.

The rest of this paper is organized as follows. In Section 2, we review related works and
in Section 3, we explain three important aspects of the proposed method in detail: joint regression
and classification, knowledge distillation, and Bayesian optimization. In Section 4, we demonstrate
the usefulness of the proposed method using four data sets taken from Japanese Yen, Korean Won,
and Euro banknotes. We include discussion and conclusions in the following sections.

2. Related Work

For banknote recognition, images of an incoming banknote are acquired using various sensors
including visible light and infrared sensors [1]. Assuming that the variation of angles and locations
of the images is small, a certain section of the incoming image is cropped and sent for serial number
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recognition. From the cropped image, a bounding box for the serial number is usually determined.
Using the bounding box, most conventional methods segment each digit and decode each digit
sequentially [9]. In this paper, we denote these steps as region detection, ROI detection, and character
classification, respectively. Figures 1-3 show images of Japanese Yen, Korean Won, and Euro banknotes
and their cropped images, respectively.

Figure 1. Images of Japanese Yen and their cropped image. (a) Region detection (b) ROI detection
(c) Character classification.
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Figure 2. Images of Korean Won and their cropped image. (a) Region detection (b) ROI detection
(c) Character classification.
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Figure 3. Images of Euro and their cropped image. (a) Region detection (b) ROI detection
(c) Character classification.

As explained above, a typical serial number recognition system classifies each digit sequentially.
To recognize each digit correctly, traditional methods extract hand-crafted features such as HOG,
intensity, or Gabor features [2,6,13,14]. The extracted features are applied to classifiers such as
MQDF and SVM [2,6,14]. However, hand-crafted feature-based approaches are time-consuming,
complicated and require good knowledge of input data. Recently, to solve these problems, CNN-based
character recognition methods that can automatically extract features from input images have been
investigated [15,16]. Some methods introduce a hybrid CNN-SVM classifier for character recognition,
where CNN and SVM are used as a feature extractor and a classifier, respectively [2,17,18].

We implemented a CNN-based single digit classification system as shown in Figure 4. We call
this method the single digit CNN (sd_cnn) method in this paper. We also implemented a hybrid
CNN-SVM-based single digit classification system and we call this the single digit CNN-SVM
(sd_cnn_svm) method in this paper. To implement the hybrid CNN-SVM model, we first trained
the CNN as shown in Figure 4, then trained the SVM model using the features extracted from
the trained CNN model. Although the sd_cnn and sd_cnn_svm methods perform satisfactorily [2,17],
we think that these methods need to be improved because they usually require longer computation
time than the simultaneous classification of all digits [12]. To shorten the computation, we propose
a machine learning method that recognizes the entire serial number simultaneously with high accuracy.
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Figure 4. A CNN-based single digit classification system.
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3. Methodology

3.1. Joint Regression and Classification Machine Learning System

To recognize the serial number digits simultaneously, we first designed a sequential ROI detection
and classification system as shown in Figure 5. In the figure, the first CNN (the ROI detection CNN)
detects the ROI for the serial number. Using the detected ROI, the second CNN (the classification
CNN) classifies all characters in the ROI simultaneously. Because the size of the ROl is pre-determined
depending on the kind of banknote and the input image is assumed not to be tilted, it is only necessary
to detect a single point in the ROL In this research, we used the upper right corner of the bounding
box that contains the entire serial number as the position for the ROI. Please note that the position
of the upper right corner for ROI detection is not fixed in acquired image coordinates due to the
mechanical variations of an image acquisition system. Therefore, we labeled the correct upper
right corner of the bounding box of the serial number manually in preparing a training data set.
After training the ROI detection CNN, we generated the detected ROI regions. Using the detected ROI
regions, we trained the classification CNN to classify characters in the extracted region simultaneously
as done in a previous investigation [9]. We call this method multi-digit sequential (1md_seq) method in
this paper. To the best of our knowledge, this is the first attempt to decode all characters simultaneously
for banknote serial number recognition.
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Figure 5. The sequential ROI detection and classification system.
The ROI detection CNN is trained by minimizing the following loss function for an input image:
Liet = (£ =) + (7 - v)”, M

where (%, /) are the labeled coordinates of the upper right corner of the input image and (x,y) are
the predicted coordinates of the upper right corner. After training, using the predicted location from
the ROI detection CNN, we extracted the bounding box image for the serial number from the input
image and trained the classification CNN by minimizing the following loss function:

Liec = — Z Z Pjk 10g Giks 2
7x

where pj; denotes the true probability of the j-th character in the input image and the k-th kind of
character, and g is the corresponding predicted probability generated by the classification CNN.
Note that Zk P]k = Zk q]k =1.



Sensors 2019, 19, 4218 6 of 18

Although the md_seq method is straightforward to design, it may require long inference time
as it has been shown that sequential operations require longer computation time than shallow
networks [12,25]. Although the two sequential CNNs may work well to recognize the serial numbers
of banknotes, we believe that it is possible to make the system faster by sharing features between
the two CNN:Ss. It was previously demonstrated that determining the possible region for an object and
classifying the object by sharing the extracted features was successful for object detection [33]. It was
also reported that shared feature extraction and simultaneous ROI detection and classification may
greatly reduce computation time [34].

Based on these facts, we designed a deep-learning-based joint ROI detection and classification
CNN as shown in Figure 6. In the figure, the ROI detection layer and character classification layer
share convolutional layers that generate feature maps. Using the generated feature maps, the ROI
detection layer predicts the upper right corner of the serial number region that is used to extract
corresponding ROI regions of the feature maps. During training, the labeled location of the upper right
corner was compared to the prediction (the right yellow line in Figure 6) and the training attempted to
minimize the mean square error between the prediction and the labeled location. Using the predicted
location, the ROI was extracted from the feature maps and the ROI became input for the character
classification layer which classifies every digit simultaneously. Because certain regions in the feature
map of the classification network correspond to one character, we only connected the fully connected
layer for each character to the corresponding area in the feature map. This was possible because the
size of the ROI and the number and kind of characters (i.e., numeric or alphabetic) are pre-determined
by the kind of banknote. To train the classification network, we attempted to minimize the sum of
the cross-entropy loss between the prediction and the labeled serial number at each digit (the left
yellow line in Figure 6). Using this structure, we were able to detect all serial numbers simultaneously.
We trained the entire deep-learning system shown in Figure 6 using labeled data for the ROI region
in the input image and the ground truth serial number in the input image. Unlike existing methods,
the method shown in Figure 6 recognizes all digits of the serial number simultaneously to achieve
a fast computation time. We call this method multi-digit joint (md_joint) method. It has been reported
that the inference time of one shallow network can be much faster than the sequential evaluation of
one deep network even when there are a similar number of parameters due to parallel processing
in the GPU [12].

Total number of digits
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Figure 6. The joint ROI detection and classification system.
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The designed network can be trained using the labeled data by minimizing a loss function that
consists of ROI detection error and classification error:

Ltot = Lrec + ALdet/ (3)

where A is a hyperparameter that determines weights for the two loss functions.
Although the definition of L. in (3) is the same as in (2), the input for computing the loss
function is different. In (2), the loss is computed using the cropped image, while in (3) it is computed
using the entire input image. Please note that the training of a joint ROI detection and character
classification network can be more difficult than individual training of an ROI detection network and
a character classification network because additional hyperparameters exist. Moreover, one may
want to reduce the complexity of the system shown in Figure 6 by reducing the number of layers to
achieve a faster computation time. We attempted to further reduce the computation time by applying
knowledge distillation [12,24] which we discuss in the next section

3.2. Knowledge Distillation

Model compression is a method for compressing a cumbersome deep-learning model into a small
model [25]. Among several methods for model compression, knowledge distillation is a promising
technique that transfers the trained knowledge of a cumbersome model to a simple model [12,24].
For classification and regression problems, a simple model can mimic the behavior of a cumbersome
model by learning its logit values and predicted coordinates [12,24]. This approach has been shown to
be more efficient than direct training of a simple model [12,24], partly because a small network may
learn more information about the behavior of the cumbersome model.

Because fast real-time computation is important for banknote serial number recognition,
we compressed the joint ROI detection and classification network using the knowledge distillation
method by following the approach in [24]. We designed a network similar to that shown in Figure 6
but with a smaller number of fully connected layers. We call this method the multi-digit reduced joint
(md_rjoint) method in this paper. We trained this simple model through knowledge distillation.

Suppose that the probability of a trained cumbersome model after a SoftMax layer is defined as
follows [24]: )

. exp(zjk
A exp(zjx)’ @
where zj is the logit value of the cumbersome model for the j-th character in the input image and
the k-th kind of character. Then we define the probability for knowledge distillation using the trained
logit values as follows:
Cik = Zexp(z]k'/T) , )
xexp(zjx/T)
where T is a constant parameter called temperature. We also define the probability of a small model
for knowledge distillation with temperature as follows:

exp(wj;/T)

Sik = —Zj exp(wy/T)’ (6)

where wj; is the logit value of the small model for the j-th character in the input image and the k-th
kind of character. It has been shown that minimizing the cross-entropy between the cumbersome
model and the small model is approximately equivalent to minimizing logit values between the two
models when T is large [24]. Furthermore, it was demonstrated that proper selection of the T value is
important because using larger values of T may degrade the performance of knowledge distillation



Sensors 2019, 19, 4218 8 of 18

when the logit value is small [24]. To accomplish knowledge distillation, we defined the loss function
as follows:

Lkd = — ZZCjk IOgS]'k. (7)
j ok

In addition to knowledge distillation, it has been shown that adding classification using a small
network often improves performance [24]. To do that, we added another loss function, the classification
cross-entropy, defined as follows:

Los = =YY pjcloggjc, 8)
7K

where pj; is the labeled probability of the j-th character in the input image and the k-th kind of character,
and gj is the corresponding prediction from the small network with T = 1 defined as follows:

exp (wjk)

T exp(wjk)’ ©

qjk
We also defined an ROI detection loss function to determine the serial number region as follows:

Lo = (2 —x)*+ (9 —y)% (10)

where (£, 7) are the predicted coordinates from a cumbersome network and (x, y) are the predicted
coordinates from our regression network. In addition to the loss functions described above, we used
a well-known weight decay regularization function to prevent overfitting, defined as follows [35]:

Lyg = wlw, (11)

where w is a column vector that contains every weight and bias in the system. Finally, we defined
the total loss function as follows:

Ltot = A1Lget + (1 — A1) Ligg + AoLejs + A3Lypg, (12)

where A1, A, and A3 are weighting factors to determine weights for the four loss functions. We denote
this method as the multi-digit reduced joint knowledge distillation (md_rjoint_kd) method. One must
determine the hyperparameters Ay, Ay, A3, and T before training the small joint ROI detection and
classification network.

3.3. Bayesian Optimization

Manual tuning of hyperparameters is cumbersome because there is a huge number of
hyperparameter combinations. Moreover, since evaluating the performance of the joint ROI detection
and classification system is time-consuming, a brute force search of the optimal parameters may
require an extremely long computation time, possibly months. To solve this problem, we attempted
to determine the optimal hyperparameters using the Bayesian optimization method [26] instead of
manual tuning. Bayesian optimization-based methods have been shown to be effective for determining
hyperparameters involved in machine learning [26,27,30-32].

Consider an optimization problem defined as follows:

x* = argmaxf(x), (13)
xeX

where X' represents the parameter domain, x is the input parameter vector, and f(x) is an objective
function that is not differentiable and difficult to compute. A typical example of such an objective
function is the accuracy of a machine learning system that is neither differentiable with respect to
searching hyperparameters nor easily evaluated. Please note that the evaluation of the loss function
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with a new hyperparameter usually requires significant computation because a deep-learning system
needs to be trained with new hyperparameters. Therefore, conventional gradient-based optimization
methods cannot be applied to determine hyperparameters.

The Bayesian optimization method can be effectively used when the objective function is
non-differentiable, non-convex, and evaluations of the function are expensive [26-28]. It models
the objective function f(x) as a random process and sequentially updates this model by observing
data at x,, (i.e., the output of the objective function with the input parameter vector x;). After that,
it selects new input parameters to be observed in the next evaluation by maximizing an acquisition
function using the data observed so far [27,28]. The acquisition function is designed to be easier
to evaluate and optimize than the original objective function. Typically, the acquisition function is
designed by combining exploration and exploitation, which should be used appropriately to find
the optimal parameters. Optimal parameters are in a region in which the uncertainty of the model is
large (exploration) or where the prediction accuracy of the model is high (exploitation) [26].

To apply Bayesian optimization, we must choose a prior that can express assumptions about
the objective function being optimized. We assumed that the objective function (which is the accuracy
of the small machine learning system) is drawn from a Gaussian process as follows:

f(x) ~ GP(x; p(x), k(x, X)), (14)

where 11(x) and k(x,x; 0) are a mean function and a covariance function, respectively. Since the results
of machine learning systems are not deterministic, we also assumed that the observations are affected
by Gaussian noise as follows:

y=f(x)+e e~N(©0?, (15)

where y is observations and € represents Gaussian noise with zero mean and ¢? variance.
In the Bayesian optimization method, covariance can be calculated using a kernel function that
represents correlation according to the distance between two data points; the kernel function can
be parameterized with smoothness parameters such as amplitude and length scales. We used
automatic relevance determination (ARD) Matérn 5/2 kernel function, which is one of the most
widely used kernels. The ARD Matérn 5/2 kernel showed faster convergence than other kernel
functions in comparison in a previous investigation [27]. The ARD Matérn 5/2 kernel is defined as
follows [26,27]:

k(x,X;6) = 63exp(—/5r)(1 + /57 + §r2), (16)
where 6 is an amplitude and 2 is defined as follows:
2 =(x—-x)TA(x=x), (17)

where A is a diagonal matrix of length scales 6;. We denote amplitude and length scales jointly by 6.
These kernel parameters have a significant impact on determining the smoothness of the objective
function. Therefore, it is important to determine the kernel parameters, which can be determined by
maximizing a marginal likelihood function using the observed data as follows [26,30,36]:

0 = argmaxlog p(yy.n; X1:N, 0), (18)
0

where 0 is estimated kernel parameters, N is the number of data points observed to determine kernel
parameters, and log p(y;.y; X1:N, 0) is the marginal likelihood function which is defined as follows [26]:

log p(y1.ni XN, 0) = =3 (y1.n — #(xan)) T (K? 4+ 021) "Ny — n(xa:n)) — 3 log [K? + 021 — Zlog(27), (19)
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where K’ represents an N x N covariance matrix between observed input parameters as follows:

k(x;,x1;0) -+ k(x;,xn;6)
K’ = : : : (20)
k(xn,x1;0) - k(xn,xn;0)

The first term in (19) represents how well the model fits the observed data, while the second term
represents the model complexity. As the correlation of the data increases, the model becomes smoother
and the determinant becomes smaller. We determined the kernel parameters that best represented
the observed data by maximizing the marginal likelihood function; when maximizing the marginal
likelihood function, we applied an iterative optimization method since the gradient of function has
no closed-form solution.

Since we assumed that the objective function is drawn from a Gaussian process, the output
at any one point x follows a Gaussian distribution with mean and variance. However, the mean and
variance are not known to us; the Bayesian optimization method estimates the mean and variance
from prior mean and covariance via Bayesian posterior updating using the observed data x;., and y;.,,.
The posterior mean is defined as follows [26]:

(X1, Y1) = 1) + K0T (K + 021 7y, = pr(x1)), (21)

where x is an arbitrary input parameter vector contained in the parameter domain &, # is the number
of observed data points that should be greater than N, y,(x;X1.4,¥1.,) is the posterior mean that
represents the prediction of the model at the point x, K is the n x n covariance matrix, and ke( )
represents an n X 1 covariance vector between an arbitrary input parameter vector x and observed
input parameters x;.,, as follows:

K (x) = [k(xxﬁ 0 e
= [k(x,x1;0) k(xx2;0) - k(x,xn,e)} : 22)

The posterior variance is also defined as follows [26]:

02 (x;x1) = K (xx) — K () T(K? + 021) 1K (x), (23)

where ¢2(x;x1.,) is the posterior variance that represents uncertainty of the model at the point x.
We simply denote the posterior mean and variance by i, (x) and 02 (x), respectively.

To update the model sequentially, we determined the next input parameter vector to be observed
by maximizing the acquisition function as follows [26]:

Xp+1 = argmax iy (X; un(x), 0n(x)), (24)

where a,(X; 1y (x), 0, (x)) is the best-known expected improvement (EI) acquisition function that
incorporates the amount of improvement which is defined as follows [26]:

w0 (% pn (x), 00 (x)) = E[I(x)]
= E[max(fu(x) — 1,0)]

= (pn(x) — 1)@ (y”(x) _)Tn> + 00 (x)¢ (ﬂn(x)x_) T”) , (25)

On (X Un(

where I(x) is the improvement at x, ® is the standard normal cumulative distribution function, ¢ is
the standard normal probability density function, and 7, denotes the maximum value of observations
y1., (i.e., accuracy). Although there are various acquisition functions, many studies related to Bayesian
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optimization focus on the EI function, since it does not require any tuning parameters and can balance
exploitation (the first term in (25)) and exploration (the second term in (25)) properly [26,27,30].

Figure 7 shows the Bayesian optimization procedure. Figure 7a shows the objective function
estimated by observing three data points (the blue points) and the acquisition function calculated
using the posterior mean and variance from the estimated objective function. In Figure 7a, the red
point indicates the point at which the acquisition function is maximized, and the input parameter x
at this point is selected as the next input parameter to be observed as shown in the top of Figure 7b.
Figure 7b repeats the process shown in Figure 7a using four observations.

The number of observation = 3 The nhumber of observation = 4
0.6 . . ; . .

- . . . .
 Observation *
*- .
0.5 0.4 r New observation
-
% 04 Objective function é M
~ I's 02+ *
0.3
0.2 " 0 :
50 60 70 80 90 100 110 120 50 60 70 80 X 90 100 110 120
X
%1073 _ . ) 0.03
Acquisition max — , Acquisition max —,
2 ! .~ Acquisition function- 80-02 -
£ 8
1 0.01
ol . . . . R 0 . . . . .
50 60 70 80 90 100 110 120 50 60 70 80 %0 100 110 120
X X

(a) (b)
Figure 7. The Bayesian optimization procedure. (a) The number of observations is 3 (b) The number of
observations is 4.

4. Experimental Results

We evaluated the performance of the four multi-digit serial number recognition methods (md_seq ,
md_joint , md_rjoint , and md_rjoint_kd methods) in comparison with the conventional single digit
recognition methods (sd_cnn method and sd_cnn_svm method). For the sd_cnn and sd_cnn_svm methods,
we used ROIs detected by the md_seq method. We determined hyperparameters for the md_rjoint_kd
method using Bayesian optimization. Although there are four different hyperparameters for
knowledge distillation T, A1, A2, and Az in (5) and (12), we fixed A3 to 0.02 to reduce the dimensionality
of the parameters and determined the remaining three parameters using Bayesian optimization.
The md_joint and md_rjoint methods also need to determine the hyperparameter A which controls
weighting between two loss functions in (3). We determined A to be 0.01 through manual tuning.

Table 1 shows the network structure of each method. We implemented all CNN models using
the TensorFlow library (Google, Inc.) and the SVM models using the Thunder SVM library [37] which
is a fast SVM library that uses GPU. We trained all SVM models with the radial basis function (RBF)
kernel and one-vs-one [38] in classification. All CNN models were trained by Adam optimizer with
an initial learning rate of 1 x 104, a batch size of 64, and an epoch of 130. We set the momentum
parameters 1 and Sy for Adam optimizer to 0.9 and 0.999, respectively. We also randomly selected 5%
of the training data as validation data in every epoch to monitor the performance of the model and
whether overfitting occurred during training. We confirmed that the accuracy of both the training set
and the validation set converged during training. However, we did not use the validation data for
early stopping.
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Table 1. The network structure for each method.

ROI Detection Character Classification

sd_cnn convl-pooll-conv2-conv3-fcl-fc2  conv4-pool2-conv5-convé-fc3-fcd

sd_cnn_svm  convl-pooll-conv2-conv3-fcl-fc2  conv4-pool2-conv5-convé-fe3-SVM

md_seq convl-pooll-conv2-conv3-fcl-fc2  conv4-pool2-conv5-convé-fc3-fcd

md_joint convl-pooll-conv2-conv3-fcl-fc2  convl-pooll-conv2-conv3-fc3-fc4
md_rjoint conv1-pooll-conv2-conv3-fcl conv1-pooll-conv2-conv3-fc2
md_rjoint_kd convl-pooll-conv2-conv3-fcl convl-pooll-conv2-conv3-fc2

Conv, pool, and fc stand for convolutional layer, max pooling layer, and fully connected layer, respectively.

We prepared four data sets including Japanese Yen, Korean Won, and Euro banknotes to evaluate
the performance of each method. The first data set (A) contained banknotes of 1000 Yen and 5000
Yen and the second data set (B) contained banknotes of 2000 Yen and 10,000 Yen. We divided the
images of the Japanese banknotes into two data sets based on the similarity of the images. The third
data set (C) contained banknotes of 10,000 Won and the fourth data set (D) contained banknotes
of 5 Euro, 10 Euro, 20 Euro, and 50 Euro. Based on the number of ROI images, set A had 7680
training data and 1009 test data; set B had 9566 training data and 1880 test data. Set C had 9024
training data and 1910 test data; set D had 7232 training data and 1052 test data. Figures 8-11 show
images from the four sets, respectively. As shown in the figures, the fonts of the characters and the
backgrounds of the four sets are different. We trained the deep-learning systems for each data set
separately to yield accurate recognition of each banknote. All experimental data sets are available at
https:/ / github.com/ejeong93/SNRdataset.

(@
(b)
Figure 8. Typical images from set A. (a) 1000 Yen (b) 5000 Yen.
(@
(b)

Figure 9. Typical images from set B. (a) 2000 Yen (b) 10,000 Yen.
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Figure 10. Typical images from set C: 10,000 Won.
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Figure 11. Typical images from set D. (a) 5 Euro (b) 10 Euro (c) 20 Euro (d) 50 Euro.

Table 2 shows the recognition results from the six methods using the four data sets. We trained
each model 5 times and reported test accuracies of the test result averages. However, we trained
the md_seq method only once because one model was required for knowledge distillation. To calculate
the test accuracy, we counted the number of test images in which all digits were correctly classified
and then divided it by the total number of test images.

Table 2. Performance of all methods.

sd_cnn  sd_cnn_svm  md_seq md_joint md_rjoint  md_rjoint_kd

set A 97.29 96.33 98.02 97.03 89.81 97.62

set B 98.23 97.12 99.26 98.69 97.70 99.54
Accuracy (%)

set C 99.53 99.13 99.69 98.12 85.59 99.64

set D 99.26 99.17 99.24 98.86 88.35 99.26

In Table 3, we also reported the inference time of each method. This was computed as the average
of 100 times for 64 arbitrary images (the batch size) from each data set using a PC with Intel(R) Core(TM)
i7-7700 CPU and NVIDIA GeForce GTX 1060. As shown in the tables, the sd_cnn , sd_cnn_som,
and md_seq methods showed similar accuracies while the inference time of the md_seq method was
about 12.10 milliseconds (32.99%) shorter than the sd_cnn method and about 24.72 milliseconds
(50.14%) shorter than the sd_cnn_svm method. The sd_cnn_svm method was the slowest because
it includes the feature extraction process from the trained CNN model. The md_joint method was
faster than the md_seq method while the performance was slightly worse than the md_seq method.
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We suspect that this is because it is more difficult to train a joint system. Although the md_rjoint
method was faster than the md_joint method, the accuracy of the md_rjoint method was worse than
other methods. The md_rjoint_kd method was the fastest (equal to md_rjoint ) method with high
accuracy. The inference time of the md_rjoint_kd method was about 16.22 milliseconds (44.22%) shorter
than the sd_cnn method and about 28.84 milliseconds (58.50%) shorter than the sd_cnn_svm method and
about 4.12 milliseconds (16.76%) shorter than the md_seq method. Although the md_rjoint_kd method
had the same network structure as the md_rjoint method, the md_rjoint_kd method showed surprisingly
higher accuracy because it was effectively trained to mimic the behavior of the md_seq method which
had high accuracy. In addition, the hyperparameters for knowledge distillation were appropriately
determined to acquire high accuracy using Bayesian optimization. Please note that 58.50%, 44.22% and
16.76% of speed improvements can be very important in real-time applications that use an embedded
system. In addition, the md_rjoint_kd method using knowledge distillation techniques for set B and D
performs even better than the md_seq teacher model, as shown in Table 2. Please note that this is not

surprising since it was reported previously that a shallow model may perform better than a teacher
model [12].

Table 3. Inference time (msec).

sd_cnn  sd_cnn_svm  md_seq md_joint md_rjoint md_rjoint_kd

ROI detection 18.31 18.43 17.78 22.02 20.50 20.46
Character classification 18.37 30.87 6.80
Total 36.68 49.30 24.58 22.02 20.50 20.46

Table 4 shows the hyperparameters determined using the Bayesian optimization method.
As discussed above, the Bayesian optimization method requires choosing three hyperparameters:
temperature T, from 1 to 1000; weighting factor A4, from 0.1 to 0.9; and weighting factor A, from 0.01 to
0.9. We also defined the objective function as the mean accuracy averaged five times and evaluated
the md_rjoint_kd method 50 times to determine the hyperparameters for knowledge distillation.
Among the 50 evaluations, eight observations were selected to determine initial kernel parameters
by minimizing the negative marginal likelihood function using the “minimize” function of the SciPy
library. To apply Bayesian optimization, we also used the initial mean value of 0.5 (since accuracy is
in the range of 0 to 1), an observation noise variance of 10°, the ARD Matérn 5/2 kernel function,
and the EI function for the acquisition function. We terminated the search for hyperparameters with
Bayesian optimization if the already observed parameters were selected as the parameters to be
observed in the next evaluation.

Table 4. Hyperparameters determined from Bayesian optimization.

Set A Set B Set C SetD
T A Aa T M Az T AM Ar T A Aa
md_rjoint_kd 729 04 088 33 01 088 949 01 001 981 0.1 0388

Figure 12 shows a graph of the maximum mean accuracy found with the Bayesian optimization
method over the number of evaluations for each data set. Please note that Bayesian optimization is
the method to find hyperparameters when the objective function is maximized. As shown in Figure 12
and Table 2, the Bayesian optimization method found the hyperparameters with an accuracy of 97.62%
using only 28 observations for set A and with an accuracy of 99.54% using only 24 observations
for set B. Figure 12 also shows this method found the hyperparameters with an accuracy of 99.64%
using only 18 observations for set C and with an accuracy of 99.26% using 45 observations for set D.
Moreover, the accuracy of the md_rjoint_kd method for set B and D was superior to the teacher model,
the md_seq method.
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Bayesian Optimization Results
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Figure 12. Bayesian optimization results for data set.

5. Discussion

We investigated knowledge distillation and a Bayesian optimization method for improving
the performance of machine learning-based serial number recognition for Japanese Yen, Korean Won,
and Euro banknotes. If one wants to apply the proposed method for other banknotes, it is necessary
to modify the size of the ROI and the number and kind of characters which are pre-determined by
the kind of banknotes. In addition, re-training the machine learning model using new banknotes
is necessary.

In our experiments, the joint recognition method was faster than the sequential method while
showing similar accuracy, which implies that it is possible to share convolution layers for ROI
detection and serial number recognition. Although the reduced joint model trained by traditional
supervised learning showed very poor performance, it was possible to train the reduced model to
have performance comparable to the sequential method using knowledge distillation. We believe that
this was possible because the reduced system learns rich behaviors of the sequential model [12,24].

In this paper, we assumed that banknote classification is perfectly performed before serial number
recognition. If banknote classification is wrong, serial number recognition performance may be
degraded because our recognition methods in this paper use results of the banknote classification.
One may conceive of a joint method for banknote classification and serial number recognition which is
a subject for future study.

Since banknote recognition is based on images acquired using image sensors, sensor signal
pre-processing methods may affect the performance of the recognition. Investigation of pros and cons
of different sensor signal processing methods for banknote recognition is also a subject for future study.

In addition, one may argue that there exist better serial number recognition methods than
the proposed method. We do not intend to argue that the proposed method is superior to every
state-of-the-art method. The focus of this research is the investigation of the usefulness of knowledge



Sensors 2019, 19, 4218 16 of 18

distillation and the Bayesian optimization method for a CNN-based joint ROI detection and multi-digit
serial number recognition system. Comparison of the proposed method with other state-of-the-art
methods will be considered for future work.

6. Conclusions

We propose a fast machine learning-based serial number recognition system for banknotes.
For fast computation, the proposed method simultaneously determines the region of interest for
the serial number and classifies the characters in the serial number. Moreover, we apply knowledge
distillation to reduce the complexity of the proposed method. We determine several hyperparameters
involved in knowledge distillation using the Bayesian optimization method. We verify the usefulness
of the proposed method in experiments using Japanese Yen, Korean Won, and Euro banknotes.
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